

Status and prospects of nPDF global analyses

Petja Paakkinen

University of Jyväskylä

MC4EIC2021

19 Nov 2021

Nuclear modifications of parton distributions

Nuclear PDFs (nPDFs) often described in terms of

nuclear modification
$$f_i^{p/A}(x,Q^2) \ = \ R_i^{p/A}\left(x,Q^2\right) f_i^{p}\left(x,Q^2\right)$$
 bound-proton PDF free-proton PDF

PDFs of the full nucleus are then constructed with

$$f_i^A(x,Q^2) = Z f_i^{\mathrm{p}/A}(x,Q^2) + (A-Z) \, f_i^{\mathrm{n}/A}(x,Q^2)$$
 and assuming $f_i^{\mathrm{p}/A} \overset{\mathrm{isospin}}{\longleftrightarrow} f_i^{\mathrm{n}/A}$

The nuclear effects grow as a power-law in the nuclear mass $\cal A$

- Not enough data to fit each nucleus independently
- → Need a global analysis across different masses!

Latest and next generation NLO nPDF global fits

nNNPDF2.0

JHEP 09, 183

EPPS16

EPJC 77, 163

lA NC DIS

Reference

+ JLab NC DIS				✓	√ new!
ν A CC DIS	✓	✓			✓
pA DY	✓		✓	✓	✓
πA DY	✓				✓
RHIC dAu π^0, π^\pm	✓		✓		✓
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$			✓		
LHC pPb dijet $R_{ m FB}$	✓				
$ ightarrow$ dijet $R_{ m pPb}$					√ new!
LHC pPb D ⁰					√ ne _W !
LHC pPb W,Z Run 1	✓	✓	✓		✓
+ Run 2 pPb W		✓	✓		√ new!
Q,W cut in DIS	1.3, N/A GeV	1.87, 3.5 GeV	2.0, 3.5 GeV	1.3, 1.7 GeV	1.3, 1.8 GeV
Data points	1811	1467	828	1564	2023 Prelim.
Free parameters	20	256	19	19	24 Prelim.
Error analysis	Hessian	Monte Carlo	Hessian	Hessian	Hessian
Error tolerance $\Delta \chi^2$	52	N/A	35	35	35 Prelim.
Free-proton PDFs	CT14	NNPDF3.1	\sim CTEQ6M	∼CTEQ6M	CT18A Prelim.
HQ treatment	S-ACOT	FONLL	S-ACOT	S-ACOT	S-ACOT
Indep. flavours	6	6	5	4	6

nCTEQ15WZSIH

PRD 104, 094005

nCTEQ15HIX

PRD 103, 114015

TBA

EPPS21 Prelim

W bosons in pPb at 8.16 TeV

Potential probes of the flavour separation (and strangeness):

- $u\bar{d} (u\bar{s}, c\bar{s}) \to W^+$

Remember: small-x, high- Q^2 quarks and gluons correlated by DGLAP evolution \rightarrow constraints for gluons

Increased statistics for W bosons in the 8.16 TeV data set

→ Included in nNNPDF2.0 and nCTEQ15WZ

W/Z bosons in pPb at 5.02 TeV and 8.16 TeV - impact in nNNPDF2.0

Flexible neural-network parametrization (256 free parameters)

Includes CMS and ATLAS W/Z data

Compared to DIS-only fit:

- $\begin{tabular}{ll} \blacksquare & {\sf Preference} & {\sf for} & {\sf EMC} & {\sf effect} & {\sf both} & {\sf in} \\ u & {\sf and} & d \\ \end{tabular}$
- Clear evidence for small-x shadowing

nNNPDF2.0 does not use fixed-target DY data

 \rightarrow W/Z data have to compensate

$$R_f^A(x,Q^2) = \frac{Zf_f^{p/A}(x,Q^2) + (A-Z)f_f^{n/A}(x,Q^2)}{Zf_f^p(x,Q^2) + (A-Z)f_f^n(x,Q^2)}$$

W/Z bosons and inclusive hadrons - impact in nCTEQ15WZSIH

nCTEQ15WZ [Kusina et al., Eur.Phys.J.C 80 (2020) 968] includes also ALICE & LHCb W/Z data

→ Most extensive EW-boson data set to date

Further gluon constraints in nCTEQ15WZSIH form inclusive hadron production

- One needs to keep an eye on fragmentation function uncertainties
 - ightharpoonup Partially cancel in the $R_{\mathrm{p}A}$

Need to mitigate free-proton PDF uncertainty

Absolute cross sections carry large proton-PDF uncertainty!

Should not be neglected when fitting the nPDFs!

Wherever possible, we use nuclear modification ratios to cancel the free-proton PDF uncertainty

For Ws at 8.16 TeV, we formulate a mixed-energy nuclear modification ratio

$$R_{\rm pPb} = \frac{\mathrm{d}\sigma_{8.16 \text{ TeV}}^{\rm pPb}/\mathrm{d}\eta_{\mu}}{\mathrm{d}\sigma_{8.0 \text{ TeV}}^{\rm pp}/\mathrm{d}\eta_{\mu}}$$

↓ Cancel proton-PDF uncertainty ↓

Proton-PDF uncertainties in EPPS21 fit.

Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

We study baseline-PDF sensitivity by fitting nuclear modifications separately for each CT18A error set

Baseline error mostly subdominant in the observables we fit, but shows up e.g. in the fixed-target DY

Dijets at 5.02 TeV "ew!

Excellent fit!

Results in line with the reweighting study [Eskola, Helenius, PP & Paukkunen,

Using the NLO pQCD S-ACOT- m_{T} GM-VFNS [Helenius & Paukkunen, JHEP 05 (2018) 196]

Using a $p_{\rm T} > 3~{\rm GeV}$ cut to reduce theoretical uncertainties

Excellent fit!

Results in line with the reweighting study [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

Using the NLO pQCD S-ACOT- m_{T} GM-VFNS [Helenius & Paukkunen, JHEP 05 (2018) 196]

Using a $p_{\rm T}>3~{\rm GeV}$ cut to reduce theoretical uncertainties

Excellent fit!

Using the mixed-energy nuclear modification ratio

$$R_{\rm pPb} = \frac{\mathrm{d}\sigma_{8.16~TeV}^{\rm pPb}/\mathrm{d}\eta_{\mu}}{\mathrm{d}\sigma_{8.0~TeV}^{\rm pp}/\mathrm{d}\eta_{\mu}}$$

to cancel the free-proton PDF uncertainty

Fully consistent with the dijets and D^0 s

■ Important check on the nPDF universality & factorization

These data do not appear to give additional flavour-separation constraints on top of those we had already in EPPS16

Looking forward to increased precision at LHC Run 3

Results in line with the reweighting study [Paukkunen & Zurita, Eur.Phys.J.C 80 (2020) 3811

We take into account the leading target-mass corrections

No sign of isospin-dependence in the bound-proton nuclear modifications $R_i^{p/A}$

Flavour separation (esp. strangeness) remains a difficult beast to tame

- Not enough data to put stringent constraints on a flavour by flavour basis
- Some sensitivity to proton-PDF uncertainties

Significant reduction in the gluon uncertainties!

- Driven by dijet and D⁰ data, but consistent with Ws
- Strong evidence for mid-*x* antishadowing and small-*x* shadowing

- All three consistent within uncertainties, but significant differences in the uncertainty estimates
- Best constrained gluons in the EPPS21 Prelim. fit from pPb dijets and D-mesons!

A-dependence of gluon modifications

Direct gluon constraints available only for heavy nuclei (most constraining: pPb dijets & D-mesons)

- → Gluons and small-x quarks poorly constrained for lighter nuclei
- → Significant parametrization dependence

How confidently can we interpolate the light-nuclei gluons from measurements at large A?

- lacktriangle SMOG@LHCb and RHIC (pAI) can help for the large x
- → Need for lighter-ion LHC pA runs and EIC!

Data availability w.r.t. A

- $\sim 50\%$ of the data points are for Pb!
- \odot Good coverage of DIS measurements for different A (but only fixed target!)
- (3) Hadronic observables available only for heavy nuclei!

Light-ion runs at LHC could:

- Complement other light-nuclei DY data with W and Z production (strangeness!)
- Give first direct constraints (e.g. dijets, D-mesons) on light-nuclei gluon distributions!

Data availability w.r.t. A

- $\sim 50\%$ of the data points are for Pb!
- \odot Good coverage of DIS measurements for different A (but only fixed target!)
- $\stackrel{ ext{(a)}}{ ext{(b)}}$ DY data more scarce, but OK A coverage
- (3) Hadronic observables available only for heavy nuclei!

Light-ion runs at LHC could:

- Complement other light-nuclei DY data with W and Z production (strangeness!)
- Give first direct constraints (e.g. dijets, D-mesons) on light-nuclei gluon distributions!

Dijet production in pO at 9.9 TeV

Similar setup as in the CMS 5.02 TeV pPb measurement

Total integrated pO cross section of $81~\mu\mathrm{b}$

- \blacksquare Compare with $\sim 330~\mu b$ in pPb at 5.02 TeV
- Sufficient to give reasonable statistics even at relatively low luminosities 16000 events at $0.2~{\rm nb}^{-1}$

486000 events at $6 \; {\rm nb}^{-1}$

Problem: absolute cross sections very sensitive to the used free-proton PDFs

 Difficult to disentangle nuclear modifications from the free-proton d.o.f.s

Problem: We do not expect a pp reference at 9.9 TeV

■ Could we use a mixed energy ratio pO(9.9 TeV)/pp(8.8 TeV)?

 $\ensuremath{\mathsf{N.B.}}$ not corrected for NP effects

Dijet $R_{ m pO}^{ m norm.}$ in pO at 9.9 TeV

Problem: We do not expect a pp reference at 9.9 TeV

■ Could we use a mixed energy ratio pO(9.9 TeV)/pp(8.8 TeV)? Yes!

Excellent cancellation of free-proton PDFs

→ Direct access to nuclear modifications

Luminosity (and hadronization) uncertainties can be made to cancel with self-normalization, but this would cancel also part of the nPDF effects

Already few ${\rm nb}^{-1}$ can be expected to be enough to put new constraints on nPDFs (if we have sufficient statistics for the pp reference)

→ Can resolve different nPDF parametrisations!

Gluon constraints from EIC

EIC will significantly widen the kinematic range of DIS constraints for nPDFs

■ Comparing with LHC measurements will put collinear factorization with nuclei to a stringent test

With the $F_{
m L}$ extraction cabability, EIC provides a clean probe to study small-x gluons

 \blacksquare Good constraining power to well down to 10^{-2} in a high-energy scenario

Charm-tagged cross-section measurement can vastly reduce high- \boldsymbol{x} gluon uncertainty

see also: [Kelsey et al., Phys.Rev.D 104 (2021) 054002]

Limits of applicability – large and small x

Large \boldsymbol{x} subject to target-mass and higher-twist corrections

- Do these have sizable effect? (Yes)
- Can we still get a good fit with traditional nPDFs? (Yes)
- Any need for isospin-dependent modifications? (No)

[Paukkunen & Zurita, Eur.Phys.J.C 80 (2020) 381] [Segarra *et al.*, Phys.Rev.D 103 (2021) 114015]

Expect gluon density to saturate at small x

- When does the simple DGLAP picture break down?
- What experimental signatures do we need?

Small-x corrections already in the linear phase (BFKL)

- Do these become important before saturation kicks in?
- Need resummation and/or higher orders
- → Many opportunities for the EIC!

Higher orders – the pursue for NNLO

Several NNLO analyses appeared over the past years

- KA15 [PRD 93 (2016) 014026] (NC DIS, DY)
 nNNPDF1.0 [EPJ C79 (2019) 471] (NC DIS)
- TuJu19 [PRD 100 (2019) 096015] (NC DIS, CC *v*-DIS)
- KSASG20 [PRD 104 (2021) 034010] (NC DIS, CC *ν*-DIS)

Limited currently to fixed-target data

- → No direct gluon constraints
- → Large uncertainties / parametrization dependence

Future prospects:

- Public codes available for DY/W/Z at NNLO
- For hadronic observables NNLO calculations exist, but no public codes yet available

NNLO the standard for EIC?

Summary

Next generation nuclear PDFs will include a large set of data from the LHC pPb collisions

- New constraints on gluon modifications in lead → strong evidence for (anti)shadowing!
- Flavour separation uncertainties still remain large and contain some free-proton PDF uncertainty
- A new EPPS nPDF fit on its way...

A-dependence of gluon PDF poorly known

- Significant parametrization dependence in global analyses
- lacktriangle Already few ${
 m nb}^{-1}$ in pO could help us better understand gluon modifications in light nuclei

EIC will put collinear factorization with nuclei to a stringent test

- Inclusive and charm-tagged measurements able to put new constraints on gluon nPDFs
- Availability of wide spectrum of nuclear beams highly important

Bound-proton modifications *Prelim* Carbon Lead $10 \,\mathrm{GeV}^2$ $10\,\mathrm{GeV}^2)$ u_V 3.0 °C EPPS21 10^{-3} 10^{-2} 10^{-2} 10⁻¹ 10^{-1} 10^{-4} x $10 \,{\rm GeV}^2$) $10\,\mathrm{GeV}^2)$ 0.8 3.0 °C 0.6 $R_{d_{V}}^{p/Pb}(x,t)$ $x^{0.4}_{Q_{A}^{Q_{A}}}$ EPPS21 EPPS21 10^{-2} 10^{-3} 10^{-2} 10^{-4} 10-1 10^{-1} x $R_i^{p/A} = \frac{f_i^{p/A}}{f_i^p}$

$$R_i^A = \frac{Zf_i^{p/A} + Nf_i^{n/A}}{Zf_i^p + Nf_i^n}$$

 $R_i^{p/A} = \frac{f_i^{p/A}}{f_i^p}$

Full-nucleus modifications *Prelim* Carbon Lead $10 \,\mathrm{GeV}^2$ $R_{\overline{s}}^{C}(x, Q^{2} = 10 \,\text{GeV}^{2})$ 0.8 0.6 0.4 0.2 0.0 0.0 0.4 10^{-1} $10\,\mathrm{GeV}^2$ x

$$R_i^A = \frac{Zf_i^{p/A} + Nf_i^{n/A}}{Zf_i^p + Nf_i^n}$$

 10^{-3} 10^{-2} 10^{-1}

Hadronization uncertainty

Parton jets have higher cross section for R = 0.3 jets with same kinematic selections compared to hadron jets

Parton jets are harder fragmenting

After self normalization effect of hadronization is negligible

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

$$\chi^2_{\mathsf{new}}(\mathbf{z}) = \chi^2_{\mathsf{old}}(\mathbf{z}) + \sum_{ij} \left(y_i(\mathbf{z}) - y_i^{\mathsf{data}}\right) C_{ij}^{-1} \left(y_j(\mathbf{z}) - y_j^{\mathsf{data}}\right)$$

quadratic-linear: $\chi^2_{\sf old} pprox \chi^2_0 + \sum_k z_k^2$,

quadratic-quadratic: $\chi^2_{\rm old} \approx \chi^2_0 + \sum_k z_k^2$,

cubic-quadratic: $\chi_{\text{old}}^2 \approx \chi_0^2 + \sum_k (a_k z_k^2 + b_k z_k^3), \qquad y_i \approx y_i [S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2)$

$$y_i pprox y_i[S_0] + \sum_k d_{ik} z_k \ y_i pprox y_i[S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2) \ z_k^3), \qquad y_i pprox y_i[S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2)$$

- Predicted NLO distributions somewhat wider than the measured spectra
- lacktriangle High- $p_{
 m T}^{
 m ave}$ midrapidity robust against scale variations and LO-to-NLO effects
 - → can expect NNLO corrections to be small in this region
 - \rightarrow observed discrepancy seems to be a PDF related issue
- Refitting might be needed to improve agreement with data
 - → study the impact with the reweighting method

 10^{-3}

 10^{-4}

 10^{-1}

also valence quarks get modified

- pPb data deviates from NLO calculations almost the same way as the pp data
 - → had we not seen the same deviations in pp, we might have interpreted this as a fault in our nuclear PDFs
- Compared to pp case we have additional suppression in data compared to theory at forward rapidities
 - → implication of deeper gluon shadowing

- Modifications needed in CT14 to describe pp data have large impact on pPb predictions
 - → it is imperative to understand the pp baseline before making far-reaching conclusions from pPb data
- Using these data directly in nuclear PDF analysis with CT14 proton PDFs would lead to
 - overestimating nuclear effects
 - large scale-choice bias

→ Consider nuclear modification factor instead

A Hessian PDF reweighting study shows that these data can put stringent constraints on the gluon modifications

- Drastic reduction in EPPS16 gluon uncertainties
- \blacksquare Support for mid- $\!x$ antishadowing and small- $\!x$ shadowing
- lacktriangle Probes the onset of shadowing down to $x>10^{-3}$

Remaining questions:

- Is there EMC suppression for gluons?
- What happens at $x < 10^{-3}$?

$$R_i^A(x,Q^2) = f_i^{\mathrm{p}/A} \ (x,Q^2) \ / \ f_i^{\mathrm{p}} \ (x,Q^2)$$
bound-proton PDF free-proton PDF

D-mesons at 5.02 TeV - differences in theoretical descriptions

Data can probe nPDFs down to $x\sim 10^{-5}$, but x sensitivity differs between theoretical approaches:

- The HELAC framework [Lansberg & Shao, EPJ C77 (2017) 1] uses a matrix-element fitting method with $2 \rightarrow 2$ kinematics producing a narrow distribution in x (can be used also for quarkonia)
- The SACOT- m_{T} scheme [Helenius & Paukkunen, JHEP 1805 (2018) 196] of GM-VFNS NLO pQCD gives a much wider x-distribution due to taking into account the gluon-to-HQ fragmentation

Heavy-flavour production mass schemes

FFNS

In fixed flavour number scheme, valid at small $p_{\rm T},$ heavy quarks are produced only at the matrix element level

Contains $\log(p_{\mathrm{T}}/m)$ and m/p_{T} terms

ZM-VFNS

In zero-mass variable flavour number scheme, valid at large $p_{\rm T}$, heavy quarks are treated as massless particles produced also in ISR/FSR

Resums $\log(p_{\mathrm{T}}/m)$ but ignores m/p_{T} terms

GM-VFNS

A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all $p_{\rm T}$

Resums $\log(p_{\mathrm{T}}/m)$ and includes m/p_{T} terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation – large contribution to the cross section!

D-mesons at 5.02 TeV - nPDFs reweighted

R_{pPb} mostly insensitive to the differences

- ightharpoonup Reweighting with the two methods give compatible results for R_g^{Pb} see the refs. for comparison with POWHEG+PYTHIA, FONLL
- \blacksquare Large reduction in small-x uncertainties, probed down to $x\sim 10^{-5}$
- EPPS16 and nCTEQ15 brought to a closer mutual agreement

Striking similarity with the results with dijets

- → Supports the validity of collinear factorization in pPb and the universality of nPDFs
 - ▶ further confirmation possible from forward photons, low-mass DY & W/Z-bosons

[Kusina, Lansberg, Schienbein & Shao, PRL 121 (2018) 052004,

- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed

nCTEQ15 reweighted LHCb D-meson $R_{\rm pPb}$ [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

- Uncertainties smaller to begin with in the forward direction (less flexible small-x parametrization) while larger in backward almost identical results
- Data well reproduced

D-mesons at 8.16 TeV – do we have tension?

QM2019 LHCb summary talk:

"Tension between data and nPDFs predictions. Additional effects required."

 \rightarrow Theoretical description matters, HELAC predicts much smaller nPDF uncertainties for $R_{\rm FB}$ than SACOT- $m_{\rm T}$!

The slope of the 8.16 TeV data still differs from that in nPDF predictions and in 5.02 TeV data

→ How can we explain the difference?

Future prospects: Forward photons with FoCal

Isolated photons at forward rapidities are a good probe of the nuclear small- \boldsymbol{x} gluons

- Isolation cut reduces the fragmentation component
 - ► enhanced small-x sensitivity [Helenius et al., JHEP 09 (2014) 138]
- Test for the possible onset of non-linear QCD effects
- lacktriangle Complementary to the forward D^0 s and DY [cf. CERN Yellow Rep.Monogr. 7 (2019), pp. 1312-1313]

u and d valence quark modifications (in lead)

Most nuclei are close to isoscalar

ightarrow Nearly equal amout of u and d quarks

For example, we can write

$$\begin{split} f_{u_{V}}^{A} &= R_{u_{V}+d_{V}}^{A} \left(1 - \frac{A - 2Z}{A} \mathcal{A}_{u_{V}-d_{V}}^{A} \right) \frac{A}{2} (f_{u_{V}}^{p} + f_{d_{V}}^{p}) \\ f_{d_{V}}^{A} &= R_{u_{V}+d_{V}}^{A} \left(1 + \frac{A - 2Z}{A} \mathcal{A}_{u_{V}-d_{V}}^{A} \right) \frac{A}{2} (f_{u_{V}}^{p} + f_{d_{V}}^{p}) \end{split}$$

where

$$R_{u_{\rm V}+d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^p + f_{d_{\rm V}}^p} \qquad \mathcal{A}_{u_{\rm V}-d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} - f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}$$

and neutron excess $\frac{A-2Z}{A}\approx 0.2$ for Pb

→ Need high-precision data on non-isoscalar nuclei to constrain the asymmetry

Important for studying the physical origin of the EMC effect

u and d sea quark modifications (in lead)

Most nuclei are close to isoscalar

 \rightarrow Nearly equal amout of \bar{u} and \bar{d} quarks

Here

$$f_{\bar{u}}^{A} = R_{\bar{u}+\bar{d}}^{A} \left(1 - \frac{A - 2Z}{A} \mathcal{A}_{\bar{u}-\bar{d}}^{A} \right) \frac{A}{2} (f_{\bar{u}}^{p} + f_{\bar{d}}^{p})$$

$$f_{\bar{d}}^{A} = R_{\bar{u}+\bar{d}}^{A} \left(1 + \frac{A - 2Z}{A} \mathcal{A}_{\bar{u}-\bar{d}}^{A} \right) \frac{A}{2} (f_{\bar{u}}^{p} + f_{\bar{d}}^{p})$$

with

$$R_{\bar{u}+\bar{d}}^{A} = \frac{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}{f_{\bar{u}}^{p} + f_{\bar{d}}^{p}} \qquad \mathcal{A}_{\bar{u}-\bar{d}}^{A} = \frac{f_{\bar{u}}^{p/A} - f_{\bar{d}}^{p/A}}{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}$$

Flavour asymmetry only a small correction

nNNPDF2.0 does not use fixed-target DY data

→ less constraints for valence/sea separation compared to EPPS16 & nCTEQ15WZ

Gluon and strange modifications (in lead)

The gluon and strange modifications are poorly constrained in the current nPDF releases

 Better gluon constraints are available from LHC pPb dijets and D-mesons, but these need to be included in the global analyses (in progress)

The existing LHC pPb W/Z data did not give strong constraints for the strangeness

- → Additional data needed
- W+charm measured in pp, doable in pPb?

Average u and d quark modifications (in oxygen)

The average u and d valence and sea modifications

$$R_{u_{\rm V}+d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^p + f_{d_{\rm V}}^p} \qquad R_{\bar{u}+\bar{d}}^A = \frac{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}{f_{\bar{u}}^p + f_{\bar{d}}^p}$$

are under control (from interpolation)

Oxygen fully isoscalar

- → No contribution from flavour asymmetry!
- From nPDF point of view, oxygen is "simpler" than lead

nNNPDF2.0 differs (again) from EPPS16 and nCTEQ15WZ due to not having fixed-target DY data

Data from E772 indicate that there should be antishadowing for valence, but not for sea quarks

Gluon and strange modifications (in oxygen)

 $R_i^A(x,Q^2) = f_i^{\mathrm{p}/A} \ \left(x,Q^2\right) \ / \ f_i^{\mathrm{p}} \ \left(x,Q^2\right) \\ \text{bound-proton PDF} \quad \text{free-proton PDF}$

No agreement for the shape of gluon modifications!

- ! No direct data constraints available
- \rightarrow Can cause significant uncertainties e.g. for jet $R_{\rm OO}$
- → We could expect major improvement from a LHC pO run

Large uncertainties also for the strange quark

- \blacksquare nNNPDF2.0 has smaller uncertainties here likely due to including NuTeV $\nu{\rm Fe}$ CC DIS data
- Since u/d flavour asymmetry does not contribute (isoscalarity), measuring W/Z bosons in pO/OO could provide unique constraints for strangeness nuclear modifications

